AFFDL-TR-68-150

A REFINED QUADRILATERAL ELEMENT FOR ANALYSIS OF PLATE BENDING

Ray W, Clough*
University of California, Berkeley

Carlos A, Felippa**
Boeing Airplane Company, Renton

The formulation of a fully compatible general guadrilateral
plate bending element is described. The element ig assembled from
four partially constrained linear curvature compatible triangles,
arranged so that no mid-side nodes occur on the external edges of
the quadrilateral; thus, the resulting element has only 12 degrees
of freedom. Also described is a simple shear distortion mechanism
which may be incorporated into the element without changing its
basic structure. Results are presenied for static analyses with and
without shear distortion, and for plate vibration and plate buckling
studies, all performed with this quadrilateral element, It is con-
cluded that this is the most efficient general bending element yet
devised,
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SECTION I
INTRODUCTION

HISTORICAL BACKGROUND

The finite element method can be considered as the most powerful and versatile dis-
cretization technique presently available for the numerical solution of complex structural
problems using digital computers. The method was developed originally as an application
of standard siructural analysis procedures to a physically discretized approximation of the
actual system; the concept has heen extensively described elsewhere (References 1, 2, 3,
and 4) and will not be detailed here. During the past few years, study of the mathematical
foundations of the method (References 5, 6, 7, and 8) as well as its application to a wider
class of field problems (Reference 4) has greaily clarified the basic requirements for its

effective formulation,

The application of the finite element method to plate bending problems dates from the
late 1950’s. The first successful results were published in 1960 (References 9, 10, and 11),
but were obtained using rectangular elements, none of which satisfied the requirements
listed in the following section. The construction of adequate displacement expansions for
the more versatile triangular and quadrilateral shapes was not achieved until 1965, most
of these results being presented at the 1st Air Force Institute of Technology (AFIT) Con-
ference (References 12, 13, and 14). By this time, basic guides for the selection of suitable
element deformafion patterns had heen set forth empirically (Reference 15) and later
rigorously proved (References 7, and 8). Most of the early developments in plate bending
analysis by finite elements are summarized in Reference 12, During the three years since
the 1st AFIT Conference, a considerable number of publications has been devoted to general
plate bending elements. Several displacement-assumed models with various degrees of
refinement have been proposed (References 16, 17, 18,19, 20, 21, and 22) as well as elements
for analyses based on equilibrium (References 14, 23, and 24), mixed (References 25, 26,
27, 28, and 29) and ‘“‘hybrid”’ (References 30, and 31) variational principles,

In view of this long list of alternatives, if is important to consider which alternative
provides the best balance in practical usage, taking into consideration factors such as
simplicity of formulation, versatility of application, reliability, computational efiort, and
accuracy. The purpose of this paper is to describe a general quadrilateral element, formed

as an assemblage of triangular elements, which is believed to be one of the most efficient
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mesh units for both plate and thin shell applications. The quadrilateral element is designated
Q-19 to identify it as a quadrilateral with 19 basic degrees of freedom, (It is reduced to
12 degrees of freedom before incorporating into an element assemblage.) The triangular
elements of which it is formed are designated LCCT~11, meaning Linear Curvature Com-
patible Triangle with 11 degrees of freedom. The 9-degree of freedom version of this
element (LCCT-9) is the same as that designated HCT in Reference 12,

The element stiffness derivation is outlined completely, after the basic requirements and
limitations imposed on the assumed displacement expansions are summarized. Then results
obtained in various static, dynamic, and buckling analyses are presented to demonstrate the

effectiveness of the element.
DISPLACEMENT ASSUMPTION REQUIREMENTS

The transverse displacement w(x,y) is the soleprimary variable required in the formula-
tion of the total potential energy of aplate element. The set of assumed displacement patterns
in each element should belong to the admissible class of functions satisfying the following

requirements:

(1) Compatibility: (a) The assumed w(x,y) mustbe continuous and have continuous first
derivatives inside each element; (b) w(x,y) and its normal derivatives dw/dn (the normal slope)
must be uniquely specified along any element interface S (where n is normal to 5) by nodal
displacement selected on S,

{(2) Completeness: All rigid body displacement states and uniform strain (constant
curvature) states musthbeincluded in the expansion. In other words, the six terms l,x,y,x2 ,:r;y,y2
(or their equivalent in other coordinate systems) must be included in the set of element

displacement modes,

If these requirements are met, the finite element analysis is a special form of the
clagsical Rayleigh-Ritz procedure (Reference 5) in which the nodal displacements are taken
as generalized coordinates, For a stable elastic material, it follows from the positive
definite character of the fotal potential energy functional that a sequence of finite element
solutions obfained by a mesh subdivision process provides a minimizing sequence for the
sfrain energy., Using Sobolev’s inclusion theorem (Reference 32), it can be shown that the
transverse displacements converge uniformly whereas slopes, curvatures and bending
moments converge in the mean, (If the exact solution is sufficiently smooth, rotations and

curvafures also converge uniformly,)
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The compatibility requirement is not actually necessary for strain energy convergence,
“Non~conforming’’ elements which violate slope continuity between corners have been
used extensively and often with good results (References 5, 10, 11, 12, 13, and 24), If any
group of non-conforming elements can represent rigid body and constant curvature states
exactly, the finite element solutions will converge to the true value of strain energy (Rei-
erence T7), though not necessarily in monotonic form, Although their derivation is simpler,
the use of non-conforming elements in general purposé programs has certain disadvantages:
(a) energy convergence depends on the mesh subdivision pattern (Reference 13), (b) curvatures
and bending moments may not converge even if the strain energy does, and (¢) no error

control is available,
CONSTRUCTION OF DISPLACEMENT EXPANSIONS

In considering the selection of transverse displacement patterns for general polygonal
flat plate elements, it is convenient to distinguish between two classes:

1. Class 02: the assumed w(x,y) has continuous second derivatives (curvatures) at

the element corners (inside the element}. Example: single polynomial expansions,
2, Class Cl: w{x,y) may have discontinuous corner curvatures,

The generation of plate elements using 02 expansions is severely restricted by the
following limitation principle (which is proved in Reference 18):

To construct a complete and compatible 02 plate hending expansion, a minimum of

6 degrees of freedom (w’wx’wy'wxx’wxy and WYI) are required at each non-right angled

corner, and

4 degrees of freedom (w’wx’wy'wxy’ where x-y are iaken along the adjacent sides) are

required at each right-angled corner,

If less degrees of freedom are selected and full compatibility is enforced, completeness is
lost and the finite element analysis does not converge, It follows that at least 18 degrees of
freedom are required for a general triangle, 24 for an arbitrary quadrilateral and 16 for a
rectangle, When polynomial expansions are used, at least a quintic (which provides 21 gen~

eralized coordinates) is necessary for a 02 expansion over a triangle (References 18 and 19.)
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The use of 01 expansions provides more flexibility in the selection of displacement
functions, and is essential for generating compatible, complete elements with only three
degrees of freedom (w,wx,wy) Per corner. Two construction methods have been used with

success:

(1) 01 spline fit of several polynomial subexpansions assumed over triangular sub-
regions (References 12, 14 and 20). (The element described in this paper fits into this

category.)

(2} Correction of single polynomial expansions with rational functions exhibiting
curvature singularities at the corners (References 13 and 20).

Another limitation principle concerning the construction of curved side plate elements
is given in Reference 8,

SECTION ITI
DERIVATION OF THE ELEMENT STIFFNESS MATRICES

STIFFNESS OF THE LCCT-12 ELEMENT
Triangle Geometry

The geometry of an arbitrary {riangular element can be expressed in a Cartesian
coordinate system by its nodal coordinates or its projected dimensions, as shown in Figure 1a,
or alternatively by its intrinsic dimensions as defined in Figure 1b, If j and k denote the
first and second cyclic permutations of i =1,2,3 (l.e., j = 2,3,1 and k = 3,1,2}, the projected

dimensions may be expressed

bi = ¥j- ¥y {1}

403



AFFDL-TR-68-150

Also the intrinsic dimensions may be defined in terms of the projected dimensions, one of

the more important relationships being

di=‘(diuk+bibk)/'—i (2}

The analysis of the stiffness properties of a triangular element is greatly simplified by
the use of triangular (natural) coordinates, The triangular coordinates 51, ‘E'Z' 53 of any
point “P’ in the triangle may be defined either as the ratios of the areas Ai of the sub-
triangles subtended by that point to the total area A of the iriangle, or as the ratios of the
normal distances n, to the heights Hi; ie.

A, n.
AN B
gl' A HE (3)
as shown in Figure 2. It should be noted that the triangular coordinates are related by the
constraining condition 51 + gz + E’B = 1.

The relationships between Cartesian and triangular coordinates may be expressed as

follows

X = X, X, Xg Cz {4)
y Y, ¥, ¥3)L&s
or by inversion:
g, 2A,, b a ||l
|
;2 “oa | BRa by 4| X (5)
{.',3 2A by o |y

in which 2Aij = xiy]. - xjyi. From Equation 5, the following important differential relationships
between the coordinate systems may be noted:

al, b, . 0oL a.
=z . = (6)
ox 2A ay 2A
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Subelement Geometry

It was stated in the Introductionthat it is impossible to derive a fully compatible triangular
plate bending element using only a single cubic displacement expansion. To obtain a compatible
system, the basic element has been divided into three subelements, as shown in Figure 3a in
which the internal point “O’ is the centroid of the element area, and the subtriangles are
numbered to correspond with the opposite corner number. The geometric relationships
discussed above apply to each of the subtriangles if its three corners are renumbered 1-2-3,
with 3 being taken as the internal point. The subtriangle number is then identified in the
algebraic expressions by means of a superscript. The renumbering scheme for Subelement

1 is shown in Figure 3b.
Displacement Interpolation Functions

The nodal displacement degrees of freedom which are to be considered in the stiffness
matrix of the complete element also are shown in Figure 3a, These include the transverse
displacements of each corner, Wi the rotations at each corner about the x and y axes,
exi and Byi’ as well as the rotation at the three mid-~side nodes about an axis parallel to
the side, & 4’ 95 and & 6 In order to develop displacement patterns for the complete triangie,

displacement interpolation functions were assumed independenily for each subtriangle,

The displacement interpolation functions for each subelement express the relationship

between the displacements w(l) within the element and the ten displacement components of

its nodal poinis ¢ (i), as follows:
w( i), ¢(i)r(i} (7)

As may be noted in Figure 3b, the nodal displacement vector for subelement 1 is:

T
oW, 6, 8,, vy 8

y X3

8,5 %o B0 6o G5 | (8)

X0 “yo
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(a) X~Y Projected Dimensions (b) Intrinsic Dimensions

Figure 1. Dimensions of Arbitrary Triangular Element

3

»,—A=Total Area

PIELE,L) —

2 .= A,/a (i=i,2,3)

C[+§2+§3=|

Figure 2, Triangular Coordinate System

8,>
0(3)
8
2(1) x2
{a) Element Assembly {b) Subelement Nodal System

Figure 3. Assembly of the LCCT-12 Plate Bending Element
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The set of 10 cubic interpolation functions for Subelement 1 may be expressed in triangular
coordinates as follows:

' - £ (3-2§ 1+ ep}"g L, L, i
Ez(b(l)c (I}C H—(bh) (l) ) C, gg
£iay g, ~a g+ el ” a6,

@5 M3~

(1)
Lo 03- 20,0+ 6x3' L,L,0,
2 iy _p () _ w(ihy 00}
Cz(bl CS b3 gI)-l-(bz b3 k;)glgz §3

I TA
L: (3-2f,)

UL

¢ ({l) L, - (l)c

4H§,’;, Lot

_ 2>3 |

where the subscripts correspond to the renumbered nodes of the subelement, With this
convention, the interpolation functions for subelements 2 and 3 are the same ag Equation 9,
except with appropriately changed superscripts. It should be noted, however, that the nodal

displacements in Equation 8 are identified by node numbers defined for the complete element
assembly,

Now if the vector ¥ of all nodal displacements of the complete element assembly are
written in the sequence

7' s [ w 6,8, w, Bz By 5656y 8, B5 B (% 6,080 |

o Yxo “yo

| (10
= [rT 'irJ ]

the displacements in subelement 1 can be expressed

L) FOF L [4,:" gﬁ)"] [_rr__] ()

0
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where &(I) is similar to Equation 9, buf expanded with 5 zeros to account for the nodal
displacements not associated with Element 1, and with appropriate rearrangement of terms.
The submatrices ¢(e” and 4;&:’ represent the interpolation functions for the external and
internal nodal displacements respectively.

Expressing the displacements in the other subelements similarly, the complete system

of displacements can be written:

w(l) ¢i=) #,I)

l

|
(2) (2) | g2) {f.r_
W = | ¢ 1:95 [ro] (12)
3 ) 1 g

Establishing Internal Compatibility

Equation 12 is an expression of the cubic displacement patterns developed in the three
subelements, Because of the common displacements imposed at the nodes, the transverse
displacements of two adjacent elements are identical along their juncture line., However,
their normal slopes differ between the nodes; hence, Equation 12 does not represent an
internally compatible displacement field. To establish slope compatibility along the internal
edges of the subelements, additional nodes 7, 8, and 9 were located at the mid-points of
these edges, as shown in Figure 3a, The normal slope was compufed at each of these nodes

in each subelement, for example

() .
dw _ ol () ) r
(an )7 - 97 ) [b'f lb'ro] ["o ] (13)
oP
where bm js ——— and b“) is _qu_ both evaluated at node 7. Similar

7

an 70 on

expressions can be developed for each nodal slope in each subelement. To maintain internal

slope compatibility, it is necessary to match the nodal slopes in adjacent subelements,

ie., 97(” = ‘97[3), etc, (where the negative sign results from the convention that the
positive normal is directed outward), or stating all three compatibility requirements together:
3 I 3 [ 3
8, 8! (b( Lip })‘(Ia(7c),+b(70)) 0
(2) 1] (2 4ty 1 pt2)y m ).
e?} ’ 93()- ((>+b<:'(3°) )) bl -
3 2 2}, (3 (2
_99 | _99_ I_( + by )(b9°+b )_ _o_
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Edquation 14 may be expressed symbolically as follows:

[ EBo][‘:“]= o (15}

o]

Now the values of T, which will satisfy these compatibility conditions may be computed
from Equation 15; i.e,

A =—B;'Br'=-Lr {16)

Finally, introducing the compatibility constraint of Equation 16 into Equation 12, the fully
compatible displacement field in the three subelements becomes:

A
WON | ¢! ¢ S0
w2 4:22) + #2). L| r = $(2) r 7)

w(s)- 9523) 4% 3) $®

Although it is straightforward in concept, the derivation of the compatible interpolation
functions of Equation 17 involves long algebraic manipulations and is a tedious operation.

Explicit expressions for these functions are presented in the Appendix for the convenience
of the reader,

Internal Curvature Field

In order to define the stiffness matrix corresponding with the derived displacement
field, it is necessary to establish the curvatures within the subelements. The most convenient
means of defining the curvature distributionis by means of appropriate interpolation functions;
in the present case where the assumed displacement functions are cubic, it is important to
note that the curvature must vary linearly within each subelement. Thus, the curvature
field can be expressed as the product of linear interpolation functions multiplied by curvature
values defined at the corner nodes.

Within any subelement ‘‘i,”’ the curvature X il can be obtained by differentiation of
the displacement field, thus

(i)
Wyx

X' = MR I 118)
(i)

way
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where

2 (i)
(i o°¢
L — (19)

Now the nodal values of the curvatures in subelement ‘‘i”’ may be determined by evaluating

T' at corner points; thus, if the nodal curvatures are designated Xnm and the nodal
(i} (i

values of T are T, the relationship may he expressed
(i) . T:) r (20}
n
in which, for example,
(' . (i) Gy Gy iy i)y ) (i} {i) {i)
X, : [ Wex2 Yaxs %xxo Wyye Wyys Wyyo ZWyyp 2W 05 2wy ] (2i)

The linear curvature variation within the subelement can now be expressed by means of the
linear interpolation functions ¢  as follows:

X

0 0
. 0T
(i) ¢x o x(nl)= ¢x xni) (22)
o]

o O 6

where the linear interpolation functions are merely the three triangular coordinates:

¢ = (8¢, 8, ] (23

It is of interest to note that the curvatures in the three subelements are identical at the
nodal point ‘‘O”’; thus, these quantities need be evaluated only once.
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Element Stiffness

The strain energy due to bending of the subelement may be obtained by integrating the

product of the moments and the curvatures over the area of the element, i.e,

iy _ 1 (i) (i
v =3 j;m X dA {24)
where the internal moments are given by
(i)
mxx
(N = (i} - (i}

m = myy = DX {25)

m(i)

Xy

The matrix D in Equation 256 represents the constitutive relationship for the element
material, For a plate with constant material properties through the thickness ‘“h,?’ this

relationship may be expressed

3 Ch C C3
h
D = Ty C,, Cu3 (26)

where the coefficients Ci represent the elastic properties, Substituting Equations 20, 22 and

i
25 into Equation 24 leads to

, AT \
G) 1 1 i) T I (i)
it Tn_];$xn¢x an T''r
or
U(” = Lz r.r Kmr 27}
where
. . T . .
K(I) _ T,(-:) G(l)'_ril) (28)
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ie the stiffness matrix contribution of Subelement ‘i’’ expressed in terms of the nodal
Displacements r , and

(i) G(i) (i)

Gll 12 G|3

(i} =T ()T i i
¢ [ ¢ D(I)¢‘ dA = o) ol (29)

A .

(Symm) G

If the material properties and thickness are uniform over the area of the subelement, the
individual terms of the Matrix @ () become
K ()

(i)
) .. R
GU l2 c”

where R () is given by

: _— - {i)
(i) T _ A
R J; ¢ b da:

- - ™

|
2 i (30}
[

If material properties or thickness of the element vary over its area, it is recommended to
evaluate the intergral of Equation 29 numerically.

It will be noted that the stiffness matrix of the complete triangle is obtained by merely

adding the contributions of the three subelements because they are all expressed in terms
of the same set of nodal coordinates., Thus

K = K + K —+ K (30
ELEMENT STIFFNESS INCLUDING SHEAR DISTORTION

Assumed Displacements

The basic assumption of the element stiffness analysis presented in the preceding
paragraphs is the Kirchhoff hypothesis, which may be expressed mathematically as follows:

wix,y,z) = wix, y)
ow
u = =2 ax =28y (32}
- ow__ _
v = z 3y - zex
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This assumption imposes the condition that normals to the undeformed plate mid-surface
remain undistorted and normal to the deformed mid-surface. The fact that they remain
normal during deformation effectively eliminates shear distortionfrom the assumed behavior,
and thus leads to results which are applicable only to relatively thin plates, The theory
can be extended to account for shear distortion in an approximate way, however, by adding
a simple shear distortion mechanism to the Kirchhoff deformation hypothesis,.

The shear distortion mechanism assumed in this study can be explained conveniently by
reference to Figure 4a, which represents a cross-section view of a plate element. The
rotation of the cross-section is shown to depend on the rotation of the mid-surface % plus
an additional shear distortion By which is assumed to be a simple straight line rotation
(uniform shear strain through the thickness). The total rotation qS x thus is given by

¢, 5 *B, = 8, +8 (33}

dy Y

A similar assumption is made along the other axis, thus

Oow

P e (341

To define this distribution of cross-section rotations through the element field, it is
now assumed that the transverse displacements w(x,y) are given by the compatible inter-
polation functions defined by Equation 17, for each subelement:

. Ny
wiid o il (35)

Z,w

90° e
%

X,u
o —
(a) Definition of Mean Shear Distortion (k) Continuity Requirement

Figure 4. Shear Distortion Geometry
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In addition, it is assumed that the shear distortions vary linearly over the entire triangle:

BXI
B.o
By
By,
B,
_BVS 4

(36)

¥~ o
nN
[Uan .Y
[

or symbolically

B - ¢B re (37)

Now it is convenient to substifute total rotation of the section gb for the slope § in the
nodal degrees of freedom of Equation 35. Thus, using relationships derived from Equation

33 and 34, the following expressions may be defined for each corner nodal point:

[8“ . [95’“ +[_B’i.] (38)
8yi Qbyi +an

while for a typical mid-side node, such as node 4:
3 53
8, = ba = (B B3 - B, B, % (39)

where Cq = 33/ L3 and 83 = -b3/ L3. Similar expressions may be obtained for nodes 5 and 6

by cyclic permutation of indices,

Using these expressions, the interpolation functions for displacement in each subelement

Equation 35 may be rewritten as follows:

S G0 ] )

where

-y
]

B = [ wl ¢XI d-’yl "“'2 ¢x2¢y2 w 3¢x3¢y3¢4 4)5¢s ]

dispiacement vector in Eg.36

-y
n
1

A
¢%): interporation functions of Eq. I7
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and

AT

¢5 _4’8,“

~%gy2
_4"9!3

Y
_¢9xz

_¢9x3

_

- (4:84 c. +q595 c,) /2
~ (g, C +ebg, Cjl/2
~ g, Cotdg, €)/2
-(¢B4 S3 +¢95- S 1/2
~(by, S+ S3) /2
~(dy, Setdg, 5,)/2

{41}

in which the subscripts of the interpolation functions ¢' identify their nodal displacement
components, Equations 36, 37 and 40 define completely the deformation of the element,

expressing the transverse displacements Equation 40 in terms of 18 nodal displacements,
and the shearing distortions Equation 36 in terms only of the 6 nodal shear distortions,

Internal Curvature Field

Where shearing distortions are included in the displacement field, the total curvatures
X* which define the normal strain distribution depend on both the transverse displacements

and the shear distortions as follows:

ad)),
2 x

o e ||

dy
Oy depy
— ¢

oy ox

h— —

fw | | 08
w B,

ox2 ox

3w 03,

2 |t |TX T XB
, 2w 3B, 9B,

ox dy Ldy "0

{42}

The first curvature term must be defined separately for each subelement, and from Equation

40 is given by:

x(i)_ [T(i)i ! i)] s

s

415
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wke_re T () is given by Equation 18 and Tém has an equivalent definition in ferms of

I —
¢5 . However, the second curvature term in Equation 42 may be expressed for the
entire element, i.e.:

Xg * T T, (44)

where

2 O3 {45)

9 0, a3 b, b, by

applying the derivative definitions of Equation 6 to Equation 36, Thus substituting Equations 43
and 44 into Equation 42 leads to

G O vl
x* H_ [ T(')grs(')] _B_J (46)
rs

where

(i) Ail "
TS = Ts +Ts (47)

Now because these combined curvatures still vary linearly within the subelements, their
distribution can be expressed In terms of nodal curvature values as before; i.e, by analogy
with Equations 20 and 22;:

wii) (i) (i) '
[ ke
and
(i) - .
x* ! . ¢x x *(l) (49)
Element Stiffness

The strain energy due {o bending deformations may be expressed in terms of the bending
stiffness matrix by analogy with Equation 31:
T
(i) Tih)

(i)qr i) di) Kgg | K gs
9| e [ ) o | e
$n

416



AFFDL-TR-68-150

in which ¢ (i’ is exactly as in Equation 30. An additional strain energy contribution Uy
results from the shear distortion, however, which is given as follows:

- L T
Ug = 2& Q@ Bada (51)
in which the shearing forces @ are

Q E[g;]= o, B (52)

In this expression, D, represents the shear disfortion constitutive relationship. For a
plate with uniform properties through the thickness, and assuming that z is a principal
elastic direction, it may be expressed:

; Cq4q Cas
D, - h [645 C55] (53)

in which Cij are material constants.

Introducing Equations 53, 52 and 37 into Equation 51 leads to

Us =_1¢T r:.];¢£os¢3 dA rg

or

T .

= L
US B 2 rS KSS rS (54)

where K;s is the shear stiffness matrix, In the case where material properties and thickness
are uniform over the element, the shear stiffness becomes

Ky =n [Ces R Cas B (55)
Cos R Cos R

in which R 1is given by Equation 30, For nonuniform thickness or material properties,
the integral should be evaluated numerically.

The total stiffness is obtained finally by superposition of the bending and shear
contributions,

H

2 S8 (56)
]
|
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in which it should be noted that the bending terms must be computed separately for each

subelement and added, whereas the shear stiffness term K;S may be computed for the

entire element.
Condensation of Shear Distortion Degrees of Freedom

The element stiffness matrix of Equation 56 represents the element force-displacement
relationship, which may be expressed as follows:

P K K r
S
B - BB BS (57)

Ps Ksg Kgs|l| rs

» » = [] "
in which KSS KSS + KSS'
lationship, 6 shear distortion components

A total of 18 degrees of freedom are included in this re-
rg in addition to the 12 basic translation and
rotation displacements of the nodes., At this point, however, it should be noted that the
shear distortion angle [ need not be continuous between adjacent elements, As shown in
Figure 4b, the total rotation ¢> must be the same for two adjacent elements in order to
satisfy compatibility conditions, but 8 and 8 need not be the same, Consequently, the shear
distortion degrees of freedom are not needed to achieve compatibility and they may be

eliminated from the element by static condensation,

As a result of the condensation process, the modified element stiffness relationship

becomes:
P -K7r {58)
in which
— =1
K = K -K Koo K
N BB BS —S.S SB (59)
P = PB _KBS KSS PS

It is of interest to note that the degrees of freedom of this reduced element stiffness matrix
are exactly equivalent to those of the original LCCT~12 element; thus, an element including
this shear distortion capability can easily be incorporated into existing plate bending analysis
programs hased on the original element.
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GENERAL QUADRILATERAL ELEMENT Q-19

Although the LCCT-12 element employs an optimum compatible cubic displacement
field and, therefore, will yield the best possible results for a given triangular element
mesh involving compatible cubic displacements, its mid-point nodes are a somewhat un-
desirable feature, They tend to complicate mesh generation procedures, increase the band
width of the assembled equation systems, and require special identification in the development
of computer programs, To overcome these disadvantages, while retaining most of the
flexibility of the LCCT~12 element, itis convenientto develop a special version of the element

by constraining the normal slope fo vary linearly along one side.

Consider, for example, Subelement 3 of the element shown in Figure 3a, The mid-side
node 4 of this subelement can be eliminated by introducing the condition that its value is

the average of the corresponding slopes at nodes 1 and 2,

) ) Ca Sa
84 s 8x4 Cs - 8y4 55 = ¢ exr"'exz)? _(9y|+eyz )5 (60}

where Cq and 85 are the same as in Equation 39, Using this condition, the displacement
interpolation expressions in Equation 17 can he reduced to only 11 components, and the

stiffness matrix thus reduced accordingly.

The resulting partially constrained element is designated LCCT-11. (Similar con-
straints must be applied to the other sides to develop the LCCT-10 and LCCT-9 elements,)
Four LCCT-11 elements may then be assembled into the Q-19 quandrilateral having no
mid-side nodes on the exterior edges as shown in Figure 5. Although this element has
19 degrees of freedom, the 7 internal degrees of freedom of the assemblage are eliminated
by a static condensation process equivalent to Equation 56 before the quadrilateral is as-
sembled into the complete structure. Thus, the final quadrilateral has only 12 degrees of
freedom, corresponding to a translation and two rotations at each node. It is a fully com-

patible element, having linear variations of normal slopes along all exterior edges,

Also it should be noted that triangular elements including shear distortion effects can
be assembled to form a quadrilateral element in a similar fashion. In this case, however,
it has been found most convenient to condense the shear distortion degrees of freedom at the

quadrilateral assemblage level rather than in the individual triangles.
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Figure 5, Quadrilateral @-19 Assembled with 4 LCCT-11 Elements

SECTION III
RESULTS OF ANALYSES WITH THE Q-19 ELEMENT

STATIC PLATE BENDING
Neglecting Shear

In order to evaluate the accuracy obtainable with the Q-19 quadrilateral element, a
series of convergence studies were made of the central deflection developed in a square
plate, Both uniform pressure and concentrated central loading cases were considered;
boundary conditions were both simply supported and clamped. Because of double symmetry,

only one~-quarter of the plate was considered in the analyses,

The computed central deflections are presented in Figure 6, the abscissa in the graphs

representing the number of elements along one side of the square mesh, Results for the
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Figure 6. Convergence Study of Various Plate Bending Elements
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elements described in this paper are labeled Q-19, LCCT-12, and LCCT-9, Also shown are
results for rectangular elements presented in Reference 12 (mote that LCCT~9 was labeled
HCT there), as well as a new quadrilateral DVS from Reference 23, The superiority of
@-19 over any other quadrilateral element with 12 degrees of freedom is clearly evident — the
improvement over LCCT-9 is quite marked. It may be noted that DVS gives slightly better
results than @Q-19, but it has 16 degrees of freedom, including mid-side nodes which greatly
hamper its computational efficiency.

A second static analysis example is presented in Figure 7, the rectangular plate being
loaded uniformly, simply supported at two sides, clamped and free at the other two edges
{problem taken from Reference 25), Results of a4 x 4 mesh of LCCT-12 elements (2 triangles
to each square) are shown, Displacements are essentially exact, while the moments are very
close to the exact results, Computed moments from an 8 x 8 mesh are indistinguishable
from the exact curves except at the edges. It is probable that the Q-19 element would have
given still better results and would have required less computer effort. (However, the
8 x 8 LCCT-12 analysis required only 48 seconds on an IBM 7094 computer.)

Including Shear Distortion

Results of the first test of the shear distortion capability of the Q-19 element are
presented in Figure 8, The structure is a circular plate, simply supported at the outer
boundary with a transverse shearing force applied uniformly about the edge of a central
hole (Reference 25), Taking advantage of rotational symmetry about the hole, it was necessary
to consider only a sector of the plate in the finite element idealization, as shown, Comparison
of the finite element results with the exact theory demonstrates the effectiveness of the

assumed shear distortion mechanism,

The shear stress resultants Qx computed in a second analysis with the Q-19 shear
distortion element are shown in Figure 9, The structure in this case was a square, simply
supported plate subjected to a uniform loading (Figure 9a) and a central concentrated loading
(Figuré 9b). The mesh was 8 x 8 on the 1/4 plate system; the plate thickness was 1/10 of the
total span. Although no other solution is available fo compare with these results, it is of
interest to note that shear distortion caused an increase in central deflection over the
results of Figure 6 of 10% under uniform loading and 2947 with the concentrated load,

422



AFFDL-TR-68-150

;

Elastic Modulus £23.10 7 psi

Poisson's Ratio w» =

.30

Thickness h= .ot"
Free ¢ Uniform Lead g = 100 psi
|
_! Symmeiry Plate and
| Line Finite Element
n Ideqlization
08 / <ls s, of 1/2 Plate
8.5 \ .5
!
|
WWWWMWWW —— X
Fixed
- 1.8" ————w]
2A
RESULTS
—— Exact Solution Moment
© Finite Element Values Myy i
0 Y
Deflection e (4 b ﬁ
wix |03) /
2 M -2 /
0 2 § e g VX -4
<
Moment 2—2 9 )
Myx c -6
2 /
/ ®
1 /
g
-10
° 2 4 6 8 °F
-2
69
Mcﬁnem
-l1a
Xy
4 ™~ 0/
. 0
Moment
M,y
X Q Y
° 2 .4 6 .8 .2 4 6 .8
w,M,, and M, along Y= 4" M/, and M, along X = .4"
Figure 7. Analysis of a S.S-Clamped-Free Rectangular Plate

423



AFFDL-TR-68-150

TDimensionless Deflaction
w/K

o Th‘klPI?ISII!io !
ick Plote Soly n—\.

| %

" 7

1.0

Thin Plate Solulion—/

0.6 ' L1 &K
Q0 004 008 Ql2 OB 020 024

2
3-» )R‘—Hz

Thickness M ire K = 2" Q
Eh
z,v
R.=2 ]
_ 2
R; T ey —]
/’ X
Uniform Sheor
Force Q
Plote Section
Y

Smmetry Lines

Finite Elemant 1dealization

Figure 8. Analysis of Thick Annular Plate

[RNERER! oan : LAl [REP N}
ez2zazz a it 2283278
2 it a mun 12222
13 q LEH] 222 LENE)
1331 a2 ? 222 313113
m 22z 1 a i 227 EEE] .
LTI k] 7 1 N 1 2 haanis
ki E] 2 i ] 1 2 L] .
5555555 4 9 2 1 ] L ] 1w assEnes
L3 * i 2 H a 1 2 1 - ~
5. ¥ 2 ! 0 1 2 T o4 »
AssS LI 1 z 1 o 2 3 “ 5 sane
L3 5 . k] 3 L] i sl z 3 L) 3 L
[y s ] z ] 1
4] (LI [ ] 1
7 LI T 3 2 o 1
LA T T 1 22 9 1 2,
L S 1 z 1 o 1 2
T e 5 s ] e L B =
L S T ] 2 1 8 1 2
2 r . k] * 3 2 1 ° 1 2
nan e 3 . 3 ? 1 5 1 z
" L 3 2 i [ 1 z
LLIE ST S 3 2 i o 1 >
LI B S 3 R St e sl
LI S [ 2 1 [ 1 2
L] T o4 % [ 3 2 3 o 1 2
A T s 5 4 LI ] 1 [l 1 2
] T b 5 s 3 7 1 & 1 2
Ll T 6 S + k] » 1 L] i 2
5 T RS TS Uy ] 1 T = 7
AT &8 % 4 K] ? 1 [) b 2
LI I T 1 ? 1 ] 3 2
LLI BT T 3 2 1 ] 1 2
5 L T Y 3 3 1 1 1 H
A T e 5 . 3 a \ 8 i 2 ?
. T EL e S 1 27 T T T [ T T B
T4 5 a 3 ] 1 4 1 2 v
T & s % 1 2 1 a 1 z ?
L [ - 4 3 2 1 L 1 1
5 4 ] 22 1 4 1 "
L] + 1 ? 1 a 1 mr
- s 3 z T T T [ e
LI ] 3 ] 1 L] ! 1]
5 L) LI | 2 1 ] ] .
4646 5 + 3 2 i L] ] #abs
5 * ) 2 1 ? 1
L) 3 ] 1 ) 1 5
it e | L1 0 ¥ T ~ s5555558
- 1 H 1 a 1 4
ELSTE1Y 3 2 1} a n LEITTY)
RREE] 222 HE ] b
M3 7i2 L3 33333
RREL] 22 un L] 1
22222 111 a
2722222 ut ] 2222272
1 N * 11
il L1 1 080 [11E8 LT

{a}

Uniform Load

T

NI E AT 110) ANl -
nii

lil

1

T
TN IR L
111l

1

1]
)

L3 u
FR2222222F222222E 1]
272 2
2

31333

2
222 2
L e Elnd T

Hesaasgsnssoouenssts

1] 2
RH 2pr2TEERRVINIRANL
2 200
2

133331 j 21
T

2222 F11 Ky
3 LT

)
3 L1
3 »

LI )
H [
b LI ]

2
44 SEESE433222

t 1 o
0112222034843 L2] 1
$B6ELEEEEAI201 1 T4adEhbR05K " 1
54 & TEATTESI20515ceutIF & 53 4 3
AT
3 & 5% a4 T B SBELSIZOIIAATED B T &4 %4 & ]
A . T BEATILLSIZL)MNcEb?ITER T &
& TTARTELSBA23IZO2EI4L4BE0TIATY & 3
3

4 F 1768544332L1011230445567F 7 &
& TIANTESSE#332022344%50776TF &

Lk piiid
13 2neze

L3
L3Il 31

NN"
"
- R

2 . s
3 L] 5

x 4

L) & 1 ERUTTRESIZUTIASEETTEE T & ¥
] 483 ab T B GEELEIZO)1esi2E 0 7 68 55 & 1
&7 BOTRALIZN]NAAYSA T 4 B . 1

4 & TEATTREIZ4)35666767 & 8§ 4 3

b} L1 SELEHLLEE5LI20] 3444500459 " 3
SSEEedIBIRZ20112223334445 44

¥

m .

a2 m
m

L §

»n 2
ELPTCT M
22 22

2p2222 22

3 24

3
Ty T EF 137
T 3 s LEL] 2222
3 m 22422
133333 e

b LLLd 1 n
H

1y
1

222
22 222212
T IR i1
1

L2ak
[RRRRREEERISIRRRARIRRESEINEISREAL]
1

apevasssedessrscsoc s

TTIT
TI111103 101§ 3 Lanesbglatiien
i

{b)

Figure 9.

Concentrated Central Force

Computer Plots of the Transverse Shear Q-X

in a Simply Supported Square Plate

424




AFFDL-TR-68-150
ANALYSIS OF PLATE VIBRATIONS
Eigenvalue Equation

The equation of motion of a discrete coordinate system in free vibration may be written:
Kv : wz Mv {61)

in which K represents the stiffness of the assembled structure, M is the inertia matrix
of the system, w is the circular frequency of vibration and v is the vibration mode shape,
The stiffness matrix used here is the same as would be used for a static analysis; in a
finite element solution it is formed by appropriate superposition of the individual element
stiffnesses., The mass matrix may similarly be formed by assembly of the individual element
mass matrices, The first problem to be considered, then, is the definition of the element

mass matrix,
Element Mass Matrix -

Two different formulations of the element mass have been used extensively in finite
element studies: the lumped mass (LM) and the consistent mass (CM) idealizations, For
the lumped mass approach, it is assumed that the mass is concentrated in points at the
nodes of the element, with nodal wvalues chosen to be statically equivalent to the actual
mass distribution, In the case of a uniform triangular element, one third of the mass is
concentrated at each corner. The LM matrix is diagonal in form, with non-zero terms
associated only with the translational degrees of freedom.

The CM matrix may be derived from the displacement interpolation functions assumed
for the element. Using the displacements given in Equation 17, the consistent mass matrix
for each subelement is

i) AT A
M('=_]; p ¢ g (62}

where p is the mass per unit area. The complete element CM matrix is obtained by adding
the contributions of the individual subelements (by analogy with Equation 32). The CM matrix
is fully populated, in contrast to the diagonal LM matrix,

In forming the LM matrix for the Q-19 element, it was considered desirable to retain
the mass at the interior nodal point; thus, this nodal point was retained also in the stiffness
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matrix for vibration analysis, The CM matrix for the Q-19 element was developed by as-
sembling the CM matrices for 4 LCCT-9 elements; i.e. the interior mid-side nodes were
omifted, The stiffness matrix used in the CM vibration studies was the same as that used
in the LM studies, the assembled CM matrix for the complete structure had a similar banded
form to that of the stiffness matrix,

Analytical Results

The vibration frequencies computed for a series of plate systems are presented in
Figures 10-13. The systems comsidered were a rectangular simply supported plate, a
rectangular cantilever, a skewed cantilever, and a triangular cantilever, Different mesh
sizes were used in each case to demonstrate convergence, émd both LM and CM idealizations
were utilized, Also shown are results of other analyses and some experimental results, It
is apparent in these figures that the results of the finite element analysis are excellent,
giving reliable agreement with experiments and with exact theories, Of greatest significance
is the comparison between LM and CM analyses; in almost every case, the LM result for a
given mesh size is more accurate than the CM value, in spite of the fact that the CM systems
involved 2 to 3 times more degrees of freedom, The only advantage of the CM result is that
it provides an upper bound to the exact value, while the LM result may be either low or high,
Plots of a few mode shapes for the skewed cantilever plate are shown in Figure 14,

ANALYSIS OF PLATE BUCKLING
Eigenvalue Equation

The linearized buckling analysis of plates leads to an eigenvalue equation which is very

similar in form to the vibration equation; it may be written;

Kv - )\KGV {63)

in which K G is the initial stress (or geometric stiffness) matrix of the system and \ is
the critical load factor, with other terms as in Equation 59, Since the elastic stiffness
matrix K used here is the same as that used for ordinary static analyses, the essential

problem in the stability analysis is evaluation of the initial stress matrix,
Initial Stress Matrix

The initial stress matrix for plate buckling analysis may be interpreted physically as the

out-of-plane nodal forces resulting from the action of existing in-plane (membrane) stresses
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on the out-of-plane displacements. It may be calculated, in general, from an expression
of the forIn

Ko =JA' [‘f’:,,x ¢’,,T,'y I o o |»¢"’:" dA (64)

Nxv NY_ ¢w,y -

in which Nx’ ny and Ny represent the membrane stress resultant components existing in
the element, and ¢ W.X and ¢w,y represent the slopes of the assumed displacement
interpolation functions ¢ w 10 the x and y directions,

As was the case in the development of mass matrices, different levels of approximation
can be employed in the formulation of the initial stress matrices: i.e., different orders of
displacement expansions may be used for ¢w. The simplest available approximation is

based on a single linear expansion (SL) for the entire triangle; i.e., for this case

¢, (sL) = [ ¢ &, gs] (65)

The next higher order of practical usage is the single cubic expansion (SC) where the dis-
placements are those assumed in developing the incompatible triangle {here denoted BCIZ)
of Reference 13, The highest order considered here is the compatible cubic expansion, in
which the interpolation functions are those defined for each subelement in Equation 17, i.e,,
(i) ALi)

¢, (icem - ¢ (66}
In the case where the initial stress matrix is based on the same displacement expansions
used in deriving the stiffness matrix, it may be termed the congistent initial stress matrix;
thus the consistent K G for use with the LCCT elements is obtained by using Equation 66
in Equation 64, whereas the consistent K G for an analysis in which the stiffness matrix

was based on the single cubic expansion would require the use of that same expansion in
Equation 64,

Analytical Results

Results of a series ofbucklinganalyses of three different rectangular plates are presented
in Figure 15, Part ‘‘a’ shows the case of a square simply supported plate subjected to uniaxial
membrane stress Nx; Part “b’’ is a square clamped plate with uniform biaxial membrane
stresses Nx = Ny; and Part “c” is a simply supported rectangular plate (5/4 aspect ratio)
subjected to uniform shear stress ny. In each case, five different finite element types
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FINITE ELEMENT RESULTS
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LU: i_*_] 28 % 28 5032 +0.04%
{e} 5.5.Rectanguior Plate
‘S"h/::r-a’“““’ Pure 2x 2 30374 22,247 22.836 10.144
ose ool 44027 #30 BISE +10.4% (8584 HO.5%|T.892  -(.0%{6.045 -i0.7%
= T T8 16x 6 |B.T7  412.0%| 8107  +3.1% |8.409  43.1% [7.563  -2.7% |7.247  -5.2%
- : N 8x B [8314  47.0%|7.952 +2.3% (7955 +23%]7.543  -29%|7.450 -4.0%
H P 00811 +4.3%|7.884  +1.4%|7.884 4 4% {7580  -3.0%
e 4« 14 TB6  +0.5%

NOTES: (%) Only |/4 of the plate was octually considered,

(#%) These values {colculoted from energy methods) are olso approximations, and the lasY digit is
not guarantead.

Figure 15,

Buckling Analysis of Three Model Plate Problems
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were employed for each of several different mesh systems, Using the Q-19 stiffness, initial
stress stiffnesses were computed for the SL, SC, and the consistent displacement expansions,
In addition, the BCIZ and ACM elements were used with their corresponding consistent
initial stress matrices (the latter results being from Reference 33),

Comparison of these results shows that the Q-19 element with the SC or consistent
initial stress matrices gave consistently superior results, The single linear expansion
K Gr(SL), although easily formed, is not sufficiently accurate to be recommended in general.
A curious feature of the BCIZ resultsisthat they do not show regular improvement with mesh
refinement — in fact, they tend to give poorer results with the finer meshes in the shear
stress loading, In these analyses, the ACM results are seen to be well behaved, although not
as accurate as the Q-19 results; in addition, it must be remembered that they also impose

a significant geometric limitation because of their rectangular shape,

A significant conclusion -that may be drawn from these results is that the initial stress
matrix based on the single cubic expansion is as effective as the consgistent stiffness for the
Q-19 element, Thisinitial stress matrixishighly recommended, therefore, because it requires
much less computational efforf to formulate, From this observation, it appears that lower
order expansions may be used generally in deriving the geometric stiffness than are required
in the formulation of the elastic stiffness. This conclusion is parallel to the observation made
in the vibration analyses regarding the relative merits of the LM and CM matrices, where

the lower order approach also was considered superior,
The computed buckled shapes for the fine mesh @-19-analyses of these three structural

systems are shown in Figure 16, Alsoshownis the buckled shape for a shear loaded rectangle
with an aspect ratio of 5/2, showing the two lobe deflection pattern,
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(A) Simply Supported Square Plote Under Uniform
Urniaxial Compression Sig - XX

{C) Simply Supported Rectangular Plate {(8/A = 0.8)
Under Pure Shear

Figure 16,

{B) Clamped Square Plate Under Uniform Biaxial
Compression

{D} Simply Supported Rectangular Plate (8/A=0.4)
Under Pure Shear

Computer Plots of Plate Buckling Modes
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CONCLUSIONS

The principal conclusions which may be drawn from the study reported here are as
follows:

(1) The Q-19 fully compatible quadrilateral appears to be the most efficient general
plate bending element yet developed. Because it has only 12 degrees of freedom when as-
sembled into the complete system, and no mid-side nodes, it offers maximum computational
efficiency,

(2) The shear distortion mechanism incorporated into this element provides a reascnable
approximation of thick plate behavior, while leaving the general form of the element stiffness

matrix unchanged. Thus, it may easily be incorporated into existing plate analysis programs,

{(3) The plate vibration studies reported here demonstraie that a lumped mass matrix is
more efficient in representing inertial effects than a consistent mass matrix, (The same

relative behavior had been observed previously in dynamic axi-symmetric analyses,)

(4} A similar conclusion can be drawn from the plate huckling results: the initial stress
matrix based on a single cubic expansion is computationally more efficient than the higher
order consistent matrix for the Q-19 element.

It also is of interest to report that the LCCT and @-19 elements have been used extensively
and effectively in providing the bending stiffness in finite element thin shell analysis programs
{Reference 34),
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APPENDIX
COMPATIBLE DISPLACEMENT FUNCTIONS

A
For subelement 3, Equation 17 gives w3 = ¢(3} r where the displacement functions
may be expresged: .

M) A A A Aa) M) Ay M) Aa) Ms) A As)Ads)
¢ - ¢“" ¢9x| By qb"‘z ¢9:2¢8y2¢w3 qb&s 4>9y3 q,’:’94 ¢’95¢86

in which (in terms of the dimensions and coordinates of the complete element):
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A
For ‘#’g}} (i =1,2,3) change all b’s in gﬁ” to a’s,
yi xi

Above expressions apply to subelement 3, where CI > §3 , 5 2 §3
In subelements 1 (where QZ > C,I, gszgl) and in subelement 2 (where §3 > §2 , El 2§2) permute

cyclically allA subscripts and superscripts (1-2-3 permutes to 2-3-1 and 4~5-6 to 5-6-4);
L) o 2 - -
for example: ¢! =L [3(I+;.L3)C2+3(|+)\2)C3+t| Hs )\Z)CI].
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